Continuous Conditional Neural Fields for Structured Regression

نویسندگان

  • Tadas Baltrusaitis
  • Peter Robinson
  • Louis-Philippe Morency
چکیده

An increasing number of computer vision and pattern recognition problems require structured regression techniques. Problems like human pose estimation, unsegmented action recognition, emotion prediction and facial landmark detection have temporal or spatial output dependencies that regular regression techniques do not capture. In this paper we present continuous conditional neural fields (CCNF) – a novel structured regression model that can learn non-linear input-output dependencies, and model temporal and spatial output relationships of varying length sequences. We propose two instances of our CCNF framework: Chain-CCNF for time series modelling, and Grid-CCNF for spatial relationship modelling. We evaluate our model on five public datasets spanning three different regression problems: facial landmark detection in the wild, emotion prediction in music and facial action unit recognition. Our CCNF model demonstrates state-of-the-art performance on all of the datasets used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Conditional Random Fields for Regression in Remote Sensing

Conditional random fields (CRF) are widely used for predicting output variables that have some internal structure. Most of the CRF research has been done on structured classification where the outputs are discrete. In this study we propose a CRF probabilistic model for structured regression that uses multiple non-structured predictors as its features. We construct features as squared prediction...

متن کامل

Continuous Conditional Random Fields for Efficient Regression in Large Fully Connected Graphs

When used for structured regression, powerful Conditional Random Fields (CRFs) are typically restricted to modeling effects of interactions among examples in local neighborhoods. Using more expressive representation would result in dense graphs, making these methods impractical for large-scale applications. To address this issue, we propose an effective CRF model with linear scale-up properties...

متن کامل

Structured Attention Guided Convolutional Neural Fields for Monocular Depth Estimation

Recent works have shown the benefit of integrating Conditional Random Fields (CRFs) models into deep architectures for improving pixel-level prediction tasks. Following this line of research, in this paper we introduce a novel approach for monocular depth estimation. Similarly to previous works, our method employs a continuous CRF to fuse multi-scale information derived from different layers of...

متن کامل

Learning Approximate Inference Networks for Structured Prediction

Structured prediction energy networks (SPENs; Belanger & McCallum 2016) use neural network architectures to define energy functions that can capture arbitrary dependencies among parts of structured outputs. Prior work used gradient descent for inference, relaxing the structured output to a set of continuous variables and then optimizing the energy with respect to them. We replace this use of gr...

متن کامل

Sum-Product Networks for Structured Prediction: Context-Specific Deep Conditional Random Fields

Linear-chain conditional random fields (LCCRFs) have been successfully applied in many structured prediction tasks. Many previous extensions, e.g. replacing local factors by neural networks, are computationally demanding. In this paper, we extend conventional LC-CRFs by replacing the local factors with sum-product networks, i.e. a promising new deep architecture allowing for exact and efficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014